Distance Matrix Polynomials of Trees

نویسنده

  • R. L. GRAHAM
چکیده

Let G be a finite connected graph. If x and y are vertices of G, one may define a distance function d, on G by letting d&x, y) be the minimal length of any path between x and y in G (with d&, x) = 0). Thus, for example, d&x, y) = 1 if and only if {x, y} is an edge of G. Furthermore, we define the distance matrix D(G) for G to be the square matrix with rows and columns indexed by the vertex set of G which has d&x, y) as its (x, y) entry. In this paper we are concerned with properties of D(G) for the case in which G is a tree (i.e., G is acyclic). In particular, we precisely determine the coefficients of the characteristic polynomial of D(G). This determination is made by deriving surprisingly simple expressions for these coefficients as certain tied linear combinations of the numbers of various subgraphs of G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the spectra of reduced distance matrix of the generalized Bethe trees

Let G be a simple connected graph and {v_1,v_2,..., v_k} be the set of pendent (vertices of degree one) vertices of G. The reduced distance matrix of G is a square matrix whose (i,j)-entry is the topological distance between v_i and v_j of G. In this paper, we compute the spectrum of the reduced distance matrix of the generalized Bethe trees.

متن کامل

On a conjecture of Graham and Lovász about distance matrices

In their 1978 paper \Distance Matrix Polynomials of Trees", [4], Graham and Lov asz proved that the coeÆcients of the characteristic polynomial of the distance matrix of a tree (CPD(T )) can be expressed in terms of the numbers of certain subforests of the tree. This result was generalized to trees with weighted edges by Collins, [1], in 1986. Graham and Lov asz computed these coeÆcients for al...

متن کامل

Generalized numerical ranges of matrix polynomials

In this paper, we introduce the notions of C-numerical range and C-spectrum of matrix polynomials. Some algebraic and geometrical properties are investigated. We also study the relationship between the C-numerical range of a matrix polynomial and the joint C-numerical range of its coefficients.

متن کامل

Higher rank numerical ranges of rectangular matrix polynomials

In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ϵ > 0; the notion of Birkhoff-James approximate orthogonality sets for ϵ-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed denitions yield a natural genera...

متن کامل

Some Results on the Field of Values of Matrix Polynomials

In this paper, the notions of pseudofield of values and joint pseudofield of values of matrix polynomials are introduced and some of their algebraic and geometrical properties are studied.  Moreover, the relationship between the pseudofield of values of a matrix polynomial and the pseudofield of values of its companion linearization is stated, and then some properties of the augmented field of ...

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1978